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Abstract—This paper tackles the supervised evaluation of image segmentation and object proposal algorithms. It surveys, structures,

and deduplicates the measures used to compare both segmentation results and object proposals with a ground truth database; and

proposes a new measure: the precision-recall for objects and parts. To compare the quality of these measures, eight state-of-the-art

object proposal techniques are analyzed and two quantitative meta-measures involving nine state of the art segmentation methods

are presented. The meta-measures consist in assuming some plausible hypotheses about the results and assessing how well each

measure reflects these hypotheses. As a conclusion of the performed experiments, this paper proposes the tandem of precision-recall

curves for boundaries and for objects-and-parts as the tool of choice for the supervised evaluation of image segmentation. We make

the datasets and code of all the measures publicly available.

Index Terms—Image segmentation, object proposals, supervised evaluation, meta-measures
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1 INTRODUCTION

SINCE the advent of sliding window object detectors [1],
much effort has been put into providing better spatial

delineation beyond sliding windows [2], as a preprocessing
step of many state-of-the-art (SoA) algorithms [3], [4]. Bot-
tom-up segmentation methods often play an important role
in the proposed algorithms [5], [6], [7], [8], [9], and thus
improving segmentation techniques would entail improve-
ments towards better computer vision applications.

In such a challenge, providing benchmarks that help
researchers understand the weak and strong points of their
segmentation and object proposal algorithms is of para-
mount importance. Among these, the supervised evalua-
tion, i.e., comparing the results with an annotated database
called ground truth, is the most common approach; and the
measures we use to grade the partitions are the cornerstone
of the evaluation.

The first contribution of this paper is to survey and
structure a large set of evaluation measures available in
the literature. We first focus on the measures that assume a
foreground-background ground truth (Section 2), which we
refer to as object-based measures. Given their current rele-
vance, we describe how to extend these measures to evalu-
ate object proposal techniques, i.e., algorithms that propose
a reduced set of locations and shapes among which it is
probable to find the objects in the image (e.g. [5], [10], [11]).

To evaluate the generic image segmentation measures,
which we refer to as partition-based (Section 3), we show
that they can be classified depending on the interpretation
of image partition they are based on. The most obvious one

(region-based interpretation) is to interpret an image partition
as a clustering of the set of pixels into regions, so any
generic measure to evaluate clustering algorithms can be
applied in this context. We can also cast the problem to a
two-class clustering of the set of all pairs of pixels: those
pairs belonging to the same region, and those coming from
different regions (pairs-of-pixels interpretation). Finally, we
can also interpret segmentation as a detection problem, aim-
ing at telling apart the pixel contours that are true bound-
aries from those that are not (boundary-based interpretation).

Many of the most used evaluation measures, however,
are limited to provide a single number, that is, given a pair
of partitions (machine-generated and ground truth) they
give us a single value that somehow reflects the degree of
agreement between both. In the field of object detection
assessment, Hoiem et al. [12] refer to these measures as per-
formance summary measures and they stress that results
should be evaluated beyond this type of measures in order
to “help understand how one method could be improved.”
In other words, researchers need better feedback from the
evaluation than a single number.

Back to segmentation assessment, the precision-recall
curves for boundaries [13] are good examples of tools
that provide richer feedback than the F measure used as
summary. Moreover, as pointed out by [14], in addition to
measures based on the boundary-based interpretation of
a partition, region-based measures should be considered
when assessing segmentations. However, the current region-
based measures are limited to summary ones (e.g., [13], [15],
[16], [17]).

The second contribution of this work (Section 4) is a
precision-recall environment for the assessment of image
segmentation that relies on the region-based interpreta-
tion of an image partition. Inspired by [12], [18] and by
the fact that parts of objects are important clues for object
detection [19], [20], we present the precision-recall for
objects and parts, which is based on classifying the regions
into object and part candidates.
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Summary measures also play a role in performance com-
parison and researchers have a large list to choose from,
thus the question that now arises is how to compare the
goodness of an evaluation measure. In other words, we
should define a meta-measure to compare the evaluation
measures. The principle of a meta-measure is to assume a
plausible hypothesis about the segmentation evaluation
and assess how well measures match this hypothesis.

Some previous works based their claims on qualitative
meta-measures, that is, showing the behavior of the meas-
ures on a few particular qualitative examples [15], [21]. The
first approach to an extensive quantitative meta-measure
was proposed in [13]. The hypothesis in this work was that
measures should be able to discriminate between two pairs
of human-marked partitions coming from different images
(for instance, the two partitions in Fig. 1a). In an annotated
database with multiple partitions per image, the quantita-
tive meta-measure was defined as the number of same-
image partition pairs that the measure judges as less similar
than other pairs of partitions coming from different images.
[22] presented a comparison of some measures in terms of
this meta-measure.

The third contribution of this work (Section 5) is to pres-
ent two new quantitative meta-measures. Moreover, instead of
basing our hypotheses only on human-made partitions, we
extend the analysis to partitions from nine State-of-the-Art
segmentation techniques.

The first hypothesis is that measures should rank higher
SoA partitions than those obtained by means of two baseline
techniques. The meta-measure is then defined as the num-
ber of results from SoA algorithms that are judged better
than the baselines. As an example, we assess whether the
measures score higher SoA partitions like those in the top
row of Fig. 1b than the baseline ones in the lower row.

As a second meta-measure, we assume that any measure
should rank higher a partition obtained by a SoA method
on a given image than a partition obtained by the same
method but on a different image, as the two pairs of parti-
tions shown in Fig. 1c. The meta-measure in this case is
defined as the number of cases in which the measure cor-
rectly judges the same-image partition as better.

Finally, Section 6 presents the experimental validation of
this paper. For the foreground-background case (object-
based), we analyze the boundary- and pixel-based measures,
as well as three different generalization strategies to object
proposals. We show qualitative results and the quantitative
comparison of eight SoA object proposal techniques that
show the complementarity of the proposed measures. For
the partition-based case, we first compare all surveyed evalu-
ation measures using the three quantitative meta-measures.
We show that the two precision-recall measures (boundary-
and objects-and-parts-based) have outstanding results as
summary measures with respect to the rest of measures. We
further analyze these two precision-recall frameworks by
comparing nine SoA segmentation algorithms and show
qualitative results illustrating the complementarity between
the two frameworks.

Overall, the experiments show that the tandem of
boundary- and region-based measures should be the choice
for the supervised evaluation of both image segmentation
and object proposals techniques. This work is an extended
version of [23].

2 OBJECT-BASED MEASURES: REVIEW

AND IMPROVEMENTS

This section focuses on the specific case of image segmenta-
tion where both the segmentation and the ground-truth are
foreground-background partitions. Measures can focus either
on evaluating how well the pixels of the ground truth are
detected, or on how accurate the boundaries are represented.
Sections 2.1 and 2.2 review and deduplicate the measures
found in the literature under both interpretations. Then, Sec-
tion 2.3 extends thesemeasures to evaluate object proposals.

2.1 Pixel-Based Object Measures Review

Given an object detectionmethodm, its resulting single-object
detection can be written, from a pixel perspective as a division
of the image pixel set I into two disjoint classes I ¼ Pm [Nm,
where Pm and Nm refer to positive and negative pixels,
respectively, and the subscript stands for the method used.
Equivalently for the ground-truth I ¼ Pgt [Ngt.

Fig. 1. Quantitative meta-measure principles: How good are the evaluation measures at ranking the second-row partitions better than the
third-row ones?
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The goal of any automatic algorithm is to achieve a per-
fect detection, i.e., Pm ¼ Pgt, but if this is not the case, we
define the following sets:

� True positives: Pixels that are detected as object and
they are labeled as so in the ground truth:
TP ¼ Pm \ Pgt.

� False positives: Pixels that are detected as object but
they are not labeled as so in the ground truth:
FP ¼ Pm \Ngt.

� False negatives: Pixels that are classified as non-object
but they are labeled as object in the ground truth:
FN ¼ Nm \ Pgt, also known as misses.

The objective is, therefore, to maximize the true positives
while minimizing both the false positives and the false
negatives.

2.1.1 Precision, Recall, and F Measure

A widely used and accepted pair of measures to assess a
detection algorithm is the following:

� Precision: Measures the percentage of detected pixels
that are actually true:

Precision ¼ jTP jjPmj ¼
jPm \ Pgtj
jPmj � 1:

� Recall: Measures the percentage of ground-truth pos-
itives that are actually detected:

Recall ¼ jTP jjPgtj ¼
jPm \ Pgtj
jPgtj � 1:

Our objective is to maximize both measures, but in gen-
eral there is a trade-off between them, which we can mea-
sure using the F measure, that is, the harmonic mean
between precision and recall:

F ¼ 2
Prec �Rec
PrecþRec

¼ 2 jTP j
2 jTP j þ jFNj þ jFP j : (1)

To the knowledge of the authors, this coefficient was first
reported by Czekanowski in 1913 [24], in the context of
anthropology. Later, Dice used it in 1945 [25] to compare
the number of species in two samples, with respect to the
shared species in both. He coined it as coincidence index. It
was also used in the context of plant sociology by Sørensen
in 1948 [26]. Named after them, the coefficient is also known
as Czekanowski, Dice’s, or Sørensen’s coefficient. More recently,
the F measure is used as the evaluation metric in the Weiz-
mann segmentation database [27], in the context of multi-
object tracking [28], [29], or in the medical imaging con-
text [30], where it is also referred to as Spatial Overlap Index.

2.1.2 Jaccard Similarity Coefficient

The Jaccard index was introduced in the context of plant
sociology by Jaccard in 1901 [31], and in the context of object
segmentation it is often referred to as Intersection over Union
(IoU) between the machine and the ground-truth results:

JðPm; PgtÞ ¼ jPm \ Pgtj
jPm [ Pgtj ¼

jTP j
jTP j þ jFNj þ jFP j : (2)

In the PASCAL Visual Object Classes Challenge 2010 [32]
the Jaccard coefficient (called area of overlap a0) is used to
assess whether a particular object has been detected
(a0 � 0:5) or not (a0 < 0:5). In the context of object detection
in [33], object accuracy is measured by means of the same
value, denoted as A0. The performance measure used in the
salient object extraction evaluation in [34], [35] is also J ,
although denoted as P . The work in [36] uses also this mea-
sure but it is denoted as Overlap Score (OS), or spatial support
score. In [14] the Jaccard index is referred to as overlap and in
[37], as ratio of intersection.

2.1.3 The Jaccard and F Measures Are Equivalent

Comparing the expression of the F (Eq. (1)) and J (Eq. (2)),
we can deduce the following equality:

F

2� F
¼

2 jTP j
2jTP jþjFNjþjFP j

2� 2 jTP j
2jTP jþjFNjþjFP j

¼ 2 jTP j
4jTP j þ 2jFNj þ 2jFP j � 2jTP j ¼ J:

That is, both measures are functionally related. Fig. 2 plots
the value of J as a function of F , in the range of interest
½0; 1�. Given that their relationship is a monotonically
increasing function, any ranking between algorithms using
any of the two functions would be the same. In other words,
for the purpose of segmentation algorithm comparison,
both measures are equivalent. Despite this simple equiva-
lence, there exist works in the literature [38] that report
results using both measures in parallel.

In this work we will mainly use the Jaccard coefficient,
since it is more used in the literature, and therefore, com-
paring results will be easier. We believe, however, that
the main reason why this measure was selected against
the F measure is aesthetic: the expression in terms of Pm

and Pgt is more compact; although from a detection point
of view, the F measure is theoretically more justified in
our opinion.

We refer the reader to [39] for a comparison of specific
measures to evaluate foreground maps, which although
very similar to object segmentations, it is out of the scope of
this paper. In it, the authors compare their measures using
the meta-measures presented in this work (and previously
in [23]).

Fig. 2. F measure versus Jaccard index: J and F are functionally related.
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2.2 Boundary-Based Object Measures Review

Differently to the pixel-based approach, a single-object
detection result can be represented, from a boundary perspec-
tive, by the boundary between the foreground and the back-
ground pixels. Comparing the boundaries from the ground
truth and the result we could therefore assess the quality of
the detected objects.

Section 3.3 presents a review of boundary-basedmeasures
for full partitions, and highlights the well-known precision-
recall for boundaries [13] as the measure of choice. The main
idea behind this measure is to perform a Bipartite Graph
Matching (BGM) between the pieces of boundary and then
compute the precision, recall, and F measure (Fb). Given that
we are evaluating simpler foreground-background masks,
therefore, we could even compute more informative meas-
ures that specifically evaluate, for instance, how similar
the represented shapes are [40], [41], perception-inspired
losses [33], [42], etc.

When evaluating object proposals, however, we need to
compare the ground truth with a large set of potential pro-
posals (in the order of thousands, usually). The measure
must be, therefore, very efficient, leaving out the majority of
approaches introduced previously, which usually involve a
costly BGM. To overcome this issue, we propose to do a
simple morphological approximation of the precision-recall
for boundaries [13] (Fb) that avoids the BGM: to compute pre-
cision we dilate the boundary pixels of the ground-truth
shape and count the object boundary pixels that intersect
the resulting mask (recall is computed the other way
around). We then compute the morphological boundary

F measure ( ~Fb).

2.3 Evaluating Object Proposals Techniques

A current trend in image and object segmentation is gener-
ating object proposals [5], [6], [10], [11], [43], [44], [45],
which aims at generating a pool of region proposals (or can-
didates) with the objective of being as accurate as possible,
while minimizing the size of the pool. From the point of
view of object detection, they can be seen as a reduced set of
potential locations and shapes where to look for objects,
thus we would like the pool of candidates to be as small as
possible (for our algorithm to be fast), while not losing set
quality due to not considering all the set of possible loca-
tions and shapes.

To evaluate object proposals, therefore, we should
account for two counterbalancing aspects: number of pro-
posals versus the maximum achievable quality within the
candidates in the pool. When training an algorithm to find
its optimal parameterization we could perform optimiza-
tion in the Pareto front of this two-dimensional space, as
in [36] for generic image segmentation. In this work we
focus on the evaluation at testing time, where the parame-
ters are fixed.

For a given image in the database, we will, therefore,
scan all proposals, compute an object-based metric M with
respect to the ground truth, and get the maximum value. To
compute the overall performance metric, we explore three
different strategies. First, we could simply average the max-
imum measure value for all the annotated objects. Second,
we could compute the median instead, to try to be more
robust to outliers (e.g., missed objects withM close to 0).

In both cases, we are summarizing a large set of results
into a single number so we are missing the distribution
of the results. For instance, we would not distinguish a
method whose proposals on half the objects are perfect
(M ¼ 1) and half missed (M ¼ 0) from a result whose pro-
posals are always at M ¼ 0:5. We might, however, prefer
one strategy against the other depending on the application.

A histogram reflects well the distribution of M values for
a given number of proposals, but then we would end up
having a three-dimensional evaluation measure (number of
proposals, binned M, bin counts), which is always tricky to
plot. An in-between solution is to plot the percentiles of the
histogram with respect to the number of proposals, that is,
the percentage of objects on which the achievable M is
higher than a threshold. In detection terms, these percentiles
are the recall rates for differentM thresholds.

We will discuss and analyze the results obtained using
these three measures on eight state-of-the-art object pro-
posal algorithms in the experiments section.

3 PARTITION-BASED MEASURES: REVIEW AND

STRUCTURE

The state-of-the-art supervised evaluation measures can be
classified depending on the image partition interpretation
on which they are based. The most common interpretation
is as a clustering of the pixel set into a number of subsets or
regions, which we will refer to as region-based interpretation.
A partition can also be interpreted as a two-class clustering
of the set of pairs of pixels, with some pairs linking pixels
from the same region and others linking pixels from differ-
ent regions, which we will call pairs-of-pixels interpretation.
Finally, a partition can be interpreted as a detection result,
aimed at selecting the true boundaries on the image, which
we will refer to as boundary-based interpretation. Fig. 3 illus-
trates these three different partition interpretations.

The contributions of Sections 3.1 to 3.3 are to review, de-
duplicate, and discuss about the main measures found
under each of these interpretations, keeping the notation
from the original papers where possible. In [50], the reader
can find an interpretation of most of these measures in
terms of simple measures such as the F measure, the Jaccard
index, or precision-recall. Finally, Table 1 shows an over-
view of the measures.

3.1 Region-Based Measures

The directional Hamming distance from one partition S to
another S0 [46], [51] is defined as:

DH S ) S0ð Þ ¼ n�
X
R02S0

max
R2S

R0 \Rj j; (3)

where R and R0 are regions in S and S0, respectively, and n
is the number of pixels in the image. In [21] this same
measure was coined as asymmetric partition distance.
Moreover, it is equivalent to the achievable segmentation
accuracy [52] used in superpixel assessment.

As shown in [50], this measure is a generalization of the
local measure precision between R and R0:

1� 1

n
DH S ) S0ð Þ ¼ 1

n

X
R02S0

R0j j �max
R2S

R0 \Rj j
R0j j :
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The segmentation covering of a partition S by a partition S0

was defined in [14], and can be interpreted as the generali-
zation of the local measure Jaccard index between R and R0:

C S0 ! Sð Þ ¼ 1

n

X
R2S

Rj j �max
R02S0

jR \R0j
jR [R0j : (4)

A symmetric version of DH was presented in [47] as the
van Dongen distance:

dvDðS; S0Þ ¼ DH S0 ) Sð Þ þDH S ) S0ð Þ: (5)

The intuitive step further is to measure the maximum
overlap when performing a bijective matching between the
regions of the two partitions, instead of the local matchings
done in the measures above. This idea was presented in [21]
as symmetric partition distance, in [22] as bipartite-graph-
matching distance, and in the context of clustering compari-
son, in [16] as classification error distance. It is shown
in [21] that it is equivalent to the minimum number of pixels
that must not be taken into account for the two partitions to
be identical.

In [13], the consistency of the BSDS300 human partitions
is analyzed by means of the bidirectional consistency error,
which can be rewritten as:

BCEðS; S0Þ ¼ 1� 1

n

X
R2S
R02S0

R \R0j jmin
R \R0j j

Rj j ;
R \R0j j
R0j j

� �
:

(6)

The work in [16] introduced a new point of view to the
measures of clustering assessment based on information-
theoretic results. The author defines a discrete random vari-
able taking N values that consists in randomly picking any
pixel in the partition S ¼ R1; : : :; RNf g and observing the
region it belongs to. Assuming all the pixels equally proba-
ble to pick, the entropy HðSÞ associated with a partition is
defined as the entropy of such random variable. The mutual
information IðS; S0Þ between two partitions is defined
equivalently. The measure variation of information is then:

VoIðS; S0Þ ¼ HðSÞ þHðS0Þ � 2IðS; S0Þ: (7)

If divided by logN , its maximum possible value, we get the
normalized variation of information (nVoI).

3.2 Pairs-of-Pixels Measures

An image partition can be viewed as a classification of all
the pairs of pixels into two classes: pairs of pixels belonging
to the same region, and pairs of pixels from different
regions. Formally, let I ¼ p1; . . . ; pnf g be the set of pixels of

TABLE 1
Measure Structure Overview: Based on the Three Interpretations of Image Partition

Partition Interpretation Measure Representative References Notation Beyond Summary Measures

Region based

Directional Hamming distance [21], [46] DH ‘

van Dongen distance [47] dvD ‘

Segmentation covering [14] C ‘

Bipartite graph matching [21], [22] BGM ‘

Bidirectional consistency error [13] BCE ‘

Variation of information [16] VoI ‘

Pairs-of-pixels based
Probabilistic Rand index [15], [48] PRI ‘

Precision-Recall for regions [13] Pr, Rr @@@@@@@@
Boundary based Precision-Recall for boundaries [13], [49] Pb, Rb @@@@@@@@

Fig. 3. The three interpretations of image partition: Clustering of the pixel set (region-based), two-class clustering of the pairs of pixels (pairs-of-
pixels-based), and detection of true pixel contours (boundary-based).
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the image and consider the set of all pairs of pixels P ¼
pi; pj
� � 2 I � I

��i < j
� �

. Given two partitions S and S0, we

divide P into four different sets, depending on where a pair

pi; pj
� �

of pixels fall [16]:

P11: in the same region both in S and S0,
P10: in the same region in S but different in S0,
P01: in the same region in S0 but different in S,
P00: in different regions both in S and S0.

The Rand index, originally defined in [48] as a clustering
evaluation measure, arises naturally in this context:

RI S; S0ð Þ ¼ jP00j þ jP11j
jPj :

It counts the pairs of pixels that have coherent labels for the
two partitions being compared, with respect to the number
of possible pairs of pixels.

In the context of image segmentation and having a set
fGig of ground-truth partitions of the same image, the Prob-
abilistic Rand Index [15] is computed as:

PRIðS; fGigÞ ¼
X
i

RI S;Gið Þ: (8)

In this same context, the precision-recall for regions [13] is
defined as:

Pr ¼ P11j j
P11j j þ P10j j Rr ¼ P11j j

P11j j þ P01j j : (9)

As a summary measure, the F measure Fr is used.

3.3 Boundary-Based Measures

All measures above could be applied to any clustering algo-
rithm, no matter the nature of the elements being classified.
In fact, the majority of the indices presented come from the
application of general-clustering assessment measures to
image segmentation.

Image pixels, however, are spatially distributed in the
image plane, and so the concept of neighborhood arises
naturally. Therefore, an image partition with connected
components can be unambiguously defined by their
boundaries, i.e., a bijection could be made between all
possible image partitions and all possible closed bound-
aries maps.

Recalling the definition of P as the set of pairs of pix-
els in the image, let us define the set of pairs of neighbor-
ing pixels as N 	 P. One can define a bijection between
the set of boundary segments B and N linking each seg-
ment to the pair of pixels at each of its sides. Using this
notation, boundary detection can be understood as a
two-class clustering of B, dividing the segments into
those being boundaries and those not. This way, compar-
ing two partitions can be translated into comparing two
clustering of B.

To be robust to unnoticeable shifts of boundary localiza-
tion, [49] proposes to compute the optimal matching
between the segments of boundaries of the two partitions as
a maximum-weight bipartite-graph matching. The algo-
rithm is improved in [13] leading to the well-known preci-
sion-recall for boundaries (Pb, Rb, and Fb).

4 NEW MEASURE: F MEASURE FOR OBJECTS

AND PARTS

In the context of image segmentation evaluation, precision-
recall curves for boundaries [13] are a boon for researchers.
They statistically reflect, for instance, that an algorithm is
providing too coarse segmentations (low recall, high preci-
sion) or instead its results are too fragmented (low preci-
sion, high recall).

As we will show in the experiments, and as pointed out
by [14], however, region benchmarks are also needed apart
from the boundary benchmarks when assessing image seg-
mentation. Region benchmarks, however, are currently lim-
ited to summary measures as the ones reviewed in
Section 3.1. (Note that in the vocabulary used in this paper,
region-based measures are the ones based on the interpreta-
tion of a partition as a clustering of the set of pixels.)

This section presents a new region benchmark that goes
beyond the summary measures: the precision-recall curves
for objects and parts. Motivated by the fact that image seg-
mentation is increasingly being used as a preliminary step
for object detection [19], [20], we propose to assess segmen-
tation under this perspective, that is, we interpret regions in
a partition as potential object candidates, and classify them
as correct or not depending on their overlap with the
ground-truth regions.

Fig. 4 shows a toy example (left: ground truth, and right:
partition) to illustrate the proposed classification. First,
we classify those regions from the partition that overlap sig-
nificantly with a ground-truth region as object candidates
(rectangle on the left and background). We then take over-
segmentation into account, and define part candidates as
those regions that can be used as a part to form a ground-
truth region (triangle on the right). Undersegmentation frag-
mentation candidates are defined equivalently, as those
regions that have incorrectly been merged together in the
partition (circle and star).

Precision and recall are then the weighted fraction of can-
didates with respect to the total number of regions, that is,
part candidates are only partially counted.

Formally, let S ¼ R1; . . . ; RNf g be an image partition and
fGkg a set of ground-truth partitions of the same image. We

consider the set G ¼ R01; . . . ; R
0
M

� �
of all the regions in

fGkg. For each pair of regions Ri 2 S, R0j 2 G we compute

the relative overlaps as:

Oij
S ¼
jRi \R0jj
jRij Oij

G ¼
jRi \R0jj
jR0jj

:

Fig. 4. Region classification example: Regions are classified into object,
part candidates, fragmentation candidates, and noise.
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We define an object threshold go and a part threshold gp < go

and classify the regions in both partitions as described in
Algorithm 1, where “ ”means that a region is classified only
if it previously did not have amore favorable classification.

Algorithm 1. Region Candidates Classification

1: for allRi 2 S, R0j 2 Gdo
2: if Oij

S > go and Oij
G > go then

3: Ri; R
0
j  Object candidates

4: else if Oij
S > gp and Oij

G > go then

5: Ri  Fragmentation candidate
6: R0j  Part candidate
7: else if Oij

S > go and Oij
G > gp then

8: Ri  Part candidate
9: R0j  Fragmentation candidate
10: else
11: Ri; R

0
j  Noise

12: end if
13: end for

Let oc and oc0 be the number of object candidates in S and
G, respectively (note that they can differ, given thatG can be
formed by more than one partition and thus a region in S
can be matched as object with more than one region in G),
and pc and pc0 the number of part candidates. Regarding the
fragmentation candidates, we compute the percentage of
the object that could be formed from the matched parts. For-
mally, we define the amount of fragmentation frðRiÞ of a
region Ri 2 S as the addition of the relative overlaps of the
part candidates matched to Ri:

frðRiÞ ¼
X
j

Oij
G s:t: Oij

S > go

n o
(10)

fr0ðR0jÞ is defined equivalently for G. The global fragmenta-

tions fr and fr0 is computed adding the amount of fragmen-
tation among all fragmentation candidates of S and G,
respectively.

We then define the precision-recall for objects and parts as
follows:

Pop ¼ ocþ frþ b pc

jSj Rop ¼ oc0 þ fr0 þ b pc0

jGj : (11)

Intuitively, in a completely oversegmented result, the
recall would be high but the precision very low. Conversely,
a completely undersegmented result (one single region)
would entail a high precision but very low recall. As a sum-
mary measure, we propose to use the F measure (Fop)
between Pop and Rop.

5 QUANTITATIVE META-MEASURES

A meta-measure analysis must rely on accepted hypotheses
about the segmentation results and assess how coherent the
measures are with such hypotheses As an example, an
accepted hypothesis can be the human judgment of quality of
some particular examples. The meta-measure is then defined
as a quantization of how coherent the evaluation measures
arewith this judgment, as done inworks such as [15], [21].

To provide statistically significant results, however, one
must go beyond a handful of examples and provide a quan-
titative analysis on an annotated database. The remainder

of this section explains one meta-measure already pub-
lished in the literature (Section 5.1) and presents two new
meta-measures (Sections 5.2 and 5.3).

The two new meta-measures differ significantly from the
already-existing one in the sense that, instead of being based
only on human-made partitions, we base our analysis on a
large set of partitions made by state-of-the-art segmentation
techniques. In turn, these meta-measures can be easily
updated as new state-of-the-art segmentation techniques
are presented.

5.1 Swapped-Image Human Discrimination

Given an image, there is no unique valid segmentation,
since it depends on the perception of the scene, the level of
details, etc. In order to cope with this variability, the Berke-
ley Segmentation Dataset (BSDS300 [53] and BSDS500 [14])
consists of a set of images each of themmanually segmented
by more than one individual.

The hypothesis behind the first meta-measure is that an
evaluationmetric should be able to tell apart the ground-truth
partitions coming from two different images. In other words,
given a pair of ground-truth partitions from BSDS500, a mea-
sure should be able to tell whether they come from the same
image (thus differences are an acceptable refinement) or dif-
ferent images (unacceptable discrepancies).

As first proposed by [13] to evaluate the coherence of
BSDS300, given an evaluation measure m, we compute the
Probability Density Function (PDF) of the values ofm for all
the pairs of partitions in BSDS500, grouped in two classes:
those coming from different images and those from the
same one. Fig. 5 shows the PDFs for these two types of pairs
of partitions using the Fb measure.

Fig. 5. SIHD example: Distribution of Fb values for the same-image pairs
of partitions ( ) and different-image pairs ( ). In gray rectangles,
four representative pairs of partitions: a pair of correctly classified as dif-
ferent image (up-left) and as same image (up-right); and a pair incorrectly
classified as different image (down-left) and as same image (down-right).
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A simple classifier was then defined setting a threshold
on the measure to discriminate the two types of pairs. The
Swapped-Image Human Discrimination (SIHD) meta-measure
is defined as the percentage of correct classifications of that
classifier, that is, the sum of the area under the curve above
and below the threshold for the same-image and different-
image pairs, respectively. (In the original work [13], the
authors reported the Bayes Risk.)

As qualitative examples, Fig. 5 depicts four pairs of parti-
tions as representatives of the type of mistakes and correct
classifications using Fb.

5.2 SoA-Baseline Discrimination

One of the reasons why SIHD can be criticized is the fact
that it is based only on human-made partitions, that is, it
does not show how measures handle the real-world discrep-
ancies found between SoA segmentation methods. This sec-
tion and the following are devoted to present two meta-
mesures based on SoA segmentation results.

The hypothesis on which we base the meta-measure pre-
sented in this section is that evaluation measures should,
for a given image, rank higher partitions obtained by any
SoA segmentation method than partitions obtained by base-
line methods. In particular, in this work we will use nine
SoA techniques and two baseline methods.

As the first baseline technique we consider a quadtree (as
in [14], [54]), which consists in hierarchical partitions start-
ing from the whole image support and iteratively dividing
the regions into four equal rectangles, regardless of the con-
tent of the image. Fig. 1b(left) shows an example of partition
obtained by a SoA method and by a quadtree.

As a second baseline, we use a random hierarchy, that is,
we compute the SLIC [55], [56] superpixels of the image and
then iteratively merge random pairs of neighboring regions.
Fig. 1b(right) shows an example of partition obtained by a
SoA method and by a random hierarchy.

As the partitions given by the baselines can be considered
as obtained by chance, the SoA partition should be judged bet-
ter than the baseline, regardless of the application we are
focused on. For each of the techniques considered as SoA seg-
mentation methods, therefore, we compute the number of
images in the dataset in which an evaluation measure cor-
rectly judges that the baseline result is worse than the SoA
generated partition. We refer to the resulting meta-measure
as SoA-Baseline Discrimination (SABD), and it is defined as the
global percentage of correct judgments for a givenmeasure.

Fig. 6 shows an example of a correct and an incorrect
judgment by a segmentation evaluation measure of the
quality of a baseline result with respect to a SoA result.

5.3 Swapped-Image SoA Discrimination

Segmentation evaluation measures are often used to adjust
the parameters of a segmentation technique. They are there-
fore used to compare different partitions created by the same
algorithm with slightly different parameterizations and we
want the evaluation measures to differentiate between good
and better results in order to learn the best parameters. A nec-
essary condition, therefore, it is that a measure should be
able to tell apart an acceptable result from a wrong result.
Given an image, we consider a SoA partition as acceptable
result and a partition done by the same technique and
parameters but on a different image as a wrong one.

In other words, we compare the ground-truth partitions
of a certain image with two results obtained using the same
algorithm and parameterization: one segmentation of that
same image and one of a different image. The hypothesis in
this case is that the evaluation measures should judge that
the same-image result is better than the different-image one.
In the examples of Fig. 1c, the measure should judge that
the first-row partitions are better than the second-row ones,
when compared both with the ground-truth of the images
of the first row. In this meta-measure, evaluation measures
have to tackle the potential bias of the SoAmethods towards
their specific type of results.

For each SoA segmentation technique, we compute the
number of images in the dataset in which an evaluation
measure correctly judges that the same-image SoA result is
better than the different-image one. We define the meta-
measure Swapped-Image SoA Discrimination (SISD) as the
percentage of results in the database, for all the SoA meth-
ods, that the measures correctly discriminate.

Fig. 7 shows an example of a correct and an incorrect
judgment by a segmentation evaluation measure of the
quality of a SoA result judged on the same versus a dif-
ferent image.

6 EXPERIMENTAL RESULTS

This section presents the experimental validation of
the measures and meta-measures proposed in this paper.
We will use the images from BSDS500 [14], with the
object ground truth from [11] and partition ground truth
from [14]. Section 6.1 presents a qualitative comparison of
the object-based studied measures and Section 6.2 describes
the experiments on object proposals, focusing on the
behavior and complementarity of the proposed measures.
Section 6.3 shows the comparison of all partition-based eval-
uation measures in terms of the proposed quantitative meta-
measures. As a result of the analysis, we propose the two
best performing measures Fb and Fop to be used in tandem.

Fig. 6. SABD example: Correct and incorrect judgments by a segmenta-
tion evaluation measure.

Fig. 7. SISD example: Correct and incorrect judgments by a segmenta-
tion evaluation measure.
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Section 6.4 analyzes the state-of-the-art segmentation techni-
ques in terms of the precision-recall curves of these two
measures, illustrating the usefulness of these two frame-
works in tandem and the richness gained by going beyond
summary measures. We also present some experiments to
further analyze their differences and show their complemen-
tarity, reinforcing the choice of using them in tandem.

6.1 Object-Based Measures

This section shows some qualitative results to highlight the
differences between the pixel- and boundary-based meas-
ures from an object perspective. Fig. 8 depicts a ground-
truth annotated object and four different cases, each of
which evaluated with the pixel-based measure Jaccard (J)

and the boundary-based ~Fb. We also report the original Fb

to intuitively check whether the morphological approxima-

tion ~Fb is acceptable and to adjust its parameters.
Fig. 8a shows a human-made partition to represent the

quality upper-bound. The three measures report very high
values, although not a perfect 1. Fig. 8b shows a degenerate
case where the pixel-based measure does not penalize the
result, because the number of wrong pixels is very small. In
contrast, ~Fb correctly penalizes it. Fig. 8c shows the dual
result, in which the object is completely missed in terms of
pixels but the boundary-based measure does not penalize it
properly because there is a significant boundary overlap.
Fig. 8d shows a result with altered boundaries, which is

considered worse than (c) in terms of ~Fb, although pixel-
wise is a good result.

All examples show that ~Fb is a good approximation of the
original Fb. To achieve so, we adapted the boundary toler-

ance (8 percent of the image diagonal) in ~Fb to be robust to
degenerate cases such as (d).

Overall, we observe a dual behavior between the bound-
ary-based and pixel-based measures, so our proposal is to
use both measures in tandem for the object-based evalua-
tion of segmentation.

6.2 Object Proposals

The state of the art in object proposals is represented in this
work by the following eight methods: GOP [57], MCG [5],
SCG [5], CI [11], CPMC [6], GLS [10], RIGOR [43], and
SeSe [44]. Fig. 9 shows the pixel- and boundary-based evalu-
ation results for these methods using the three proposed
generalization measures.

As expected, the general trend is that the more proposals,
the better the achievable quality. The mean and median
measures show similar overall behavior, with MCG being
the best performing and slight differences such as the com-
parison between CPMC [þ] and GOP [~], which have
inverted rankings with the two measures. Being the median
consistently better than the mean suggests that there are
some outliers on the lower part of the distribution, i.e., some
missed objects where the achievable quality is close to zero.

Fig. 8. Object-based J versus Fb: Complementary examples where the behavior of the two measures differs.

Fig. 9.Object proposal evaluation: Pixel- and boundary-based measures (J and ~Fb): mean, median and recall.
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Focusing on the pixel-based measure (top row), these
differences are better reflected in the recall plots, on the
right-most part of the plot. We depict the plots for J ¼ 0:5
(very imprecise result), J ¼ 0:7 (approximate result), and
J ¼ 0:85 (precise result). Again, it is interesting to compare
the behavior between CPMC [þ] and GOP [~]. GOP has
outstanding results for J ¼ 0:5 but the ranking is exchanged
for J ¼ 0:7 and 0:85, which reflects that the majority of
results by GOP has an imprecise representation but they are
not missed. In contrast, CPMC provides results that are
much more precise, but also many more misses.

Focusing on the boundary-based measure (bottom row),
we observe that MCG and SCG are even better than the rest
of SoA. This suggest that these techniques have very accu-
rate boundaries but they might miss some parts of the
objects, which is further penalized in the pixel-based mea-
sure. The saturation of the median ~Fb to 1 (middle plot) tells
us that more than 50 percent of the results have perfectly
accurate boundaries (within the matching tolerance) but the
ones that do not are almost missed, because the mean is con-
siderably lower than the median.

Overall, we propose the two measures and three general-
ization strategies together as a good representative of the
quality and behavior of the object proposal methods.

6.3 Quantitative Meta-Measures

The state of the art of segmentation to compute the meta-
measures is represented in this paper by MCG-UCM [5],
gPb-UCM [14], ISCRA [58], EGB [59], Normalized Cuts [60],
Mean Shift [61], NWMC [62], IID-KL [63], and Saliency
Maps (on grayscale images) [64]. As baselines, we use two
techniques: a rectangular homogeneous grid (Quadtree)
and a random merging of superpixels (Random). All meth-
ods (SoA and Baselines) are assessed at the Optimal Dataset
Scale [14] with respect to each evaluation measure, that is,
using the parameters that entail the best value of the mea-
sure in mean on the whole training set of BSDS500. In other
words, we run the segmentation techniques sweeping their
parameters (from coarse to fine partitions), and then choose
the optimal parameter in terms of each evaluation measure,

globally in the whole training set. Fig. 10 shows an image,
the various ground-truth partitions, and the baseline and
SoA partitions at their ODS with respect to Fb.

The parameter values of the newly proposed measure
are: go ¼ 0:95, gp ¼ 0:25, and b ¼ 0:1. They have been
trained on the training set of BSDS500, by optimizing the
global meta-measure described below. Note that this opti-
mization would not have been feasible without quantitative
meta-measures.

As an additional property of the measures, we analyze
their definition when multiple ground-truth annotations
fGkgn1 are available. The most common approach to evalu-
ate a partition P using measure m is to compute the mean

over all annotations 1
n

Pn
k mðP;GkÞ. In contrast, some meas-

ures have specific definitions that take further advantage of
the multiple annotations. We also tested computing the
maximum and median instead of the mean over annota-
tions, with no significant differences in the results, thus we
show the ones for the mean only.

Table 2 shows the quantitative meta-measure results for
the test set of BSDS500, as well as which measures have a
specific definition for multiple ground truths.

Fig. 10. State-of-the-art examples. Top row: An image from BSDS500, the five ground-truth partitions done by different humans, and the partitions
obtained by the two baseline techniques. Bottom row: Partitions obtained by the nine representative SoA segmentation techniques, each of them at
its ODS with respect to Fb.

TABLE 2
Measure Comparison in Terms of Quant. Meta-Meas

Measure

Quant. Meta-Meas.

Specific multiple SIHD SABD SISD Global

Fb @@@@@@@@ 99.5 93.6 99.9 97.7
Fop @@@@@@@@ 98.4 94.8 97.9 97.1
NVI ‘ 96.7 83.3 96.8 92.3
C S!�

Gi

�� �
‘ 92.7 85.6 95.6 91.3

BCE ‘ 93.1 79.6 95.7 89.5
PRI ‘ 78.8 89.3 94.2 87.5
dvD ‘ 95.0 76.5 91.6 87.7
BGM ‘ 90.2 78.8 93.2 87.4
DH S)�

Gi

�� �
‘ 78.1 83.7 93.2 87.4

Fr ‘ 89.3 76.4 93.3 86.3
C �Gi

�!S
� �

‘ 91.4 72.0 90.9 84.8

DH

�
Gi

�)S
� �

‘ 73.8 58.1 77.1 69.7
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In global terms, Fb and Fop are the two top-ranked sum-
mary measures. On top of that, they both provide much
richer information in form of precision-recall curves.
Interestingly, the two measures are also the only ones
with a specific definition for the multiple-ground-truth
case (See Section 4), which reinforces the intuition that
specifying the definition is a good choice. We believe, there-
fore, that the tandem Fb-Fop should be the evaluation meas-

ures of choice. Section 6.4 reinforces this choice by showing
their complementarity in realistic scenarios.

Regarding the computational cost of the measures, the
mean time per image to compute the distances to the
multiple-partition ground truth of BSDS500 is 3:79 

2:06 s for Fb and at least one order of magnitude lower
for the rest of measures. In particular, Fop takes 0:078 

0:020 s. In scenarios where the time constraints are tight,
therefore, Fop would be the recommended measure (or

the morphological approximation ~Fb).

6.4 Precision-Recall Frameworks

This section tests the proposed tandem of measures to com-
pare a large set of state-of-the-art segmentation techniques,
and evaluates the complementary behavior of Fb and Fop,
which supports their use in tandem.

Fig. 11 shows the boundary and objects-and-parts preci-
sion-recall curves for the nine SoA segmentation methods
studied, the two baselines, and the human performance.
Prior to the assessment of segmentation techniques, let us
focus on the comparison of the two evaluation frameworks.

Precision-recall value ranges. The theoretical range of Fb

and Fop values is [0,1]. To estimate the maximum expectable
range of values of each measure in practice, we take advan-
tage of the fact that BSDS500 contains various annotations
per image. To estimate the maximum experimental value,

we evaluate the ground-truth partitions against the parti-
tions done by other individuals, in a leave-one-out way. In
the other extreme, we estimate the minimum experimental
value by evaluating the ground-truth partition of a given
image against the ground-truth of a different image. We
represent both extremes as red asterisks.

It is noticeable that the human minimum performance
for Fb is 0.21, which could be interpreted as Fb being too lax.
In this same direction, the baseline boundary precision for
Fb is between 0.2 and 0.3, that is, any result, no matter how
wrong it is, is judged as providing at least a 0.2 precision.

While in the case of Fop the human baseline is correctly
downgraded to 0.05 (as well as the swapped-image results),
then the surprising fact is that human maximum perfor-
mance is as low as 0.56 (0.81 in Fb), which could entail that
Fop is too strict.

To sum up, when judging results using both measures,
one should take into account that the experimental range of
values of Fb is 0.21-0.81 and that of Fop is 0.06-0.56, and
extract the conclusions about their results with respect to
these values.

Analysis of the precision-recall curves. Regarding the com-
parison among segmentation techniques, both frameworks
confirm that MCG-UCM outperforms the state of the art at
all regimes under both measures. If we were to decide
between gPb-UCM and ISCRA for the second place, how-
ever, gPb-UCM is consistently better in terms of boundary
localization, while ISCRA outperforms gPb-UCM from the
point of view of regions and parts.

The advantages of going beyond the summary measures
are also clear on these plots. For instance, the summary Fb

measure of quadtree (0.41) judges this technique close to
NWMC (0.55), but in the precision-recall curves it is clear
that quadtree is much worse. Similarly, judging by Fb,
NWMC would be discarded with respect to NCuts for

Fig. 11. Precision-Recall curves for boundaries (left) and for objects and parts (right). The solid curves represent the nine SoA segmentation methods
and the baselines (see legends). In dashed lines with the same color, the SoA techniques assessed on a swapped image. The marker on each curve
is placed on the Optimal Dataset Scale, F measure in the legend. The isolated red asterisks refer to the human performance, i.e., ground truth parti-
tions, assessed on the same image and on a swapped image.
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instance, but if we are interested in low recall rates it could
be of interest.

As common points between the two measures, NCuts is
judged as being much better at high recall rates than at low
ones and, conversely, NWMC is much better at high preci-
sion rates. The measures are coherent also in the fact that
human results have a better precision than recall. As one of
the main discrepant points, however, EGB is judged as the
fourth best technique by Fb while being the worse for Fop.
This behavior is further analyzed below.

Qualitative results on complementary cases. Fig. 12 shows an
image and the associated ground truth. The EGB result
(a) consists of thin long regions that surround the object but
do not close to create the regions of interest. The assessment
value of this result is Fb ¼ 0:62 and Fop ¼ 0:05. From a
region-based point of view, this type of results is correctly
penalized by Fop and not by Fb, since as a contour detector

the result is correct.
We further compare the measures qualitatively by creat-

ing two academic examples (Figs. 12b and 12c) that show
the complementary behavior, that is, examples where the
Fop behavior is not intuitive. First, partition (b) is composed
of two boxes completely included on the objects of interest.
Fop interprets them as part candidates, since they are
completely included in the objects and cover a significant
part of them, so it does not penalize the partition signifi-
cantly. On the other hand, Fb penalizes the result because
the contours of the boxes do not overlap with the true
boundaries. If we slightly increase the size of the boxes

(Fig. 12c), however, making the contours overlap but having
a small part of the boxes outside of the object, the situation
is changed: the boxes are not considered parts anymore
(Fop ¼ 0:04) and the boundary measure does not judge the
results as being very bad (Fop ¼ 0:28).

To sum up, intutively, both measures can be tricked by
incorrect results giving good evaluation values, but Fop will
usually not fail when Fb does and viceversa. In other words,
Fb and Fop are very complementary.

Qualitative results at ODS. Fig. 13 shows example parti-
tions from four SoA techniques and a baseline. For each of
them we plot the ground-truth partitions (first row), and
the partition at the Optimal Dataset Scale with respect to Fb

(second row) and Fop (third row).
We observe a general trend especially in the number of

regions in the partitions. In the case of Fb, the partitions try
to cover all the contour segments, even those marked only
by one annotator, which usually leads to a number of small
regions and over-fragmented results. On the other hand, the
ODS partitions for Fop have less regions, increasing the
probability of having a single region approximating each
object but in exchange, they miss more annotated contours.

This behavior is also reflected in the baseline partitions
done by Quadtree (last column), in which having many small
rectangles (ODSFb) entails a better probability to sweep anno-
tated contours, while having only eight big rectangles (ODS
Fop) is the best chance to overlapwith an annotated object.

Experiments reproducibility. We present the package
SEISM [65] (Supervised Evaluation of Image Segmentation

Fig. 12. Fb versus Fop: Complementary examples where the behavior of one of the measures is not the expected.

Fig. 13. Qualitative comparison of Fb and Fop: ODS partitions with respect to both measures.

1476 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 7, JULY 2016



Methods), which makes the code to compute all the meas-
ures publicly available, as well as all the segmentation
results and scripts to make our research reproducible and to
make it effortless for researchers to assess their segmenta-
tion methods.

Conclusions of the experiments. To sum up, both measures
are complementary in terms of the properties of the parti-
tions they evaluate, they both provide useful precision-
recall curves, they achieve the best meta-measure results as
summary measures, they have specific definitions for multi-
ple ground truth, and their code is public to ensure repro-
ducibility; thus we propose them in tandem as the tool of
choice for image segmentation evaluation.

7 CONCLUSIONS

This paper reviews and structures an extensive set of seg-
mentation evaluation measures, showing that the Jaccard
index and the F measure are equivalent, and presents the
new precision-recall measure for objects and parts. Three
meta-measures are used (two newly proposed) to quanti-
tatively compare the goodness of the evaluation meas-
ures. The results show that the tandem boundary and
objects-and-parts precision-recall curves is a good candi-
date for benchmarking segmentation algorithms; since
apart from obtaining the best meta-measure results as
summary measures, their precision-recall curves provide
rich knowledge about the results and they are very com-
plementary in terms of the properties of the partitions
they reflect. In the object-based analysis, we propose the
pixel- and boundary-based pair of measures, and three
generalization strategies to evaluate object proposals. We
perform an extensive experimental validation on eight
state-of-the-art object proposal techniques and on nine
generic image segmentation techniques. By making our
code and datasets publicly available we allow researchers
to easily assess their results and gain deeper understand-
ing of their algorithms.
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