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Abstract. This paper presents Deep Retinal Image Understanding (DRIU), a

unified framework of retinal image analysis that provides both retinal vessel and

optic disc segmentation. We make use of deep Convolutional Neural Networks

(CNNs), which have proven revolutionary in other fields of computer vision such

as object detection and image classification, and we bring their power to the study

of eye fundus images. DRIU uses a base network architecture on which two set

of specialized layers are trained to solve both the retinal vessel and optic disc seg-

mentation. We present experimental validation, both qualitative and quantitative,

in four public datasets for these tasks. In all of them, DRIU presents super-human

performance, that is, it shows results more consistent with a gold standard than a

second human annotator used as control.
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1 Introduction

Retinal image understanding is key for ophthalmologists while assessing widely spread

eye diseases such as glaucoma, diabetic retinopathy, macular degeneration, and hyper-

tension, among others. Although these diseases can lead to severe visual impairment

and blindness if left untreated, early diagnosis and appropriate treatment, coupled with

periodic examination by specialists, have proven to be determinant factors for control-

ling their evolution, which translates into better prognosis and an improved quality of

life for patients. Given that several risk factors associated to these diseases, such as

sedentarism, obesity and aging, are related to lifestyle, their frequency among the gen-

eral population is growing. This situation has stressed the need for automated methods

to assist ophthalmologists in retinal image understanding, and has sparked the interest

for this field among the medical image analysis community.

Two anatomical structures are of particular interest for specialists when performing

diagnostic measurements on eye fundus images: the blood vessel network and the optic

disc. Consequently, most prior work on automated analysis of retinal images has fo-

cused on the segmentation of these two structures. Classic methods for addressing the

task of blood vessel segmentation involve hand crafted filters like line detectors [17,14]

and vessel enhancement techniques [20,26,5]. Approaches that rely on powerful ma-

chine learning techniques have emerged over the last years. In [15] the authors combine

different kinds of vessel features and segment them with fully connected conditional

random fields. In [1] a gradient boosting framework is proposed for learning filters in

a supervised way. Algorithms that are able to enhance fine structures given a regres-

sion of retinal vessels have also been developed recently [19,9]. Prior work on optic
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Fig. 1. Overview of DRIU: Given a base CNN, we extract side feature maps and design special-

ized layers to perform blood vessel segmentation (left) and optic disc segmentation (right).

disc segmentation includes morphological operators [23] and hand crafted features [25]

Morales et al. [13] use morphology along with Principal Component Analysis (PCA) to

obtain the structure of the optic disk inside a retinal image. A superpixel classification

method is proposed in [3].

In the last five years, deep learning techniques have revolutionized the field of com-

puter vision. Deep Convolutional Neural Network (CNN) architectures were initially

designed for the task of natural image classification [12], and recent research has led

to impressive progress in solving that problem. At the core of these approaches, lies

a base network architecture, starting from the seminal AlexNet [12], to the more com-

plex and more accurate VGGNet [18] and the inception architecture of GoogLeNet [22].

Furthermore, CNNs have been applied successfully to a large variety of general recog-

nition tasks such as object detection [8], semantic segmentation [10], and contour de-

tection [24]. In the domain of retinal image understanding, CNNs have been used for

retinal vessel segmentation in [7] to classify patch features into different vessel classes.

For optic disc segmentation, the authors of [27] use a CNN to extract features, which

they post-process to obtain binary segmentations. Instead, our work is based on apply-

ing a CNN end-to-end, both for retinal vessel segmentation and optic disc detection,

efficiently, since we avoid the redundant computations from a patch-based approach.

In this paper, we leverage the latest progress on deep learning to advance the field of

automated retinal image interpretation. We design a CNN architecture that specializes

a base network for the tasks of segmenting blood vessels and optic discs in fundus im-

ages. An overview of our approach, which we call Deep Retinal Image Understanding

(DRIU), is presented in Figure 1. DRIU is both highly efficient and highly accurate: at

inference time, it requires a single forward pass of the CNN to segment both the vessel

network and the optic disc and, as the experimental results will show, DRIU reaches or

surpasses the performance of trained human specialists for both tasks on four publicly

available annotated datasets.



2 CNNs for Retinal Image Understanding

We approach retinal vessel segmentation and optic disc detection as an image-to-image

regression task, by designing a novel CNN architecture. We start from the VGG [18]

network, originally designed for large-scale natural image classification. For our pur-

poses, the fully connected layers at the end of the network are removed, so it mainly

consists of convolutional layers coupled with Rectified Linear Unit (ReLU) activations.

The use of four max pooling layers in the architecture separates the network into five

stages (as in Figure 1), each stage consisting of several convolutional layers. Between

the pooling layers, feature maps of the same stage that are generated by convolutions

with different filters have the same size. As we proceed deeper in the network, the in-

formation becomes coarser due to the decrease in size, which is a key factor for gener-

alization. We call this part of our architecture the “base network”. The layers of the base

network are already pre-trained on millions of images, which is necessary for training

deep architectures. To effectively use the information from feature maps with different

sizes, we draw inspiration from the “inception” architecture of GoogLeNet [22], which

adds supervision at multiple internal layers of the network, and we connect task-specific

“specialized” convolutional layers to the final layer of each stage. Each specialized layer

produces feature maps in K different channels, which are resized to the original image

size and concatenated, creating a volume of fine-to-coarse feature maps. We append

one last convolutional layer which linearly combines the feature maps from the volume

created by the specialized layers into a regressed result. In our experiments, we used

K = 16. The majority of convolutional layers employ 3 × 3 convolutional filters for

efficiency, except the ones used for linearly combining the outputs (1× 1 filters).

For training the network, we adopt the class-balancing cross entropy loss function

originally proposed in [24] for the task of contour detection in natural images. We de-

note the training dataset by S = {(Xn, Yn) , n = 1, ..., N}, with Xn being the input

image and Yn = {y
(n)
j , j = 1, ..., |Xn|}, y

(n)
j ∈ {0, 1} the predicted pixel-wise labels.

For simplicity, we drop the subscript n. The loss function is then defined as:

L (W) = −β
∑

j∈Y+

logP (yj = 1|X;W)− (1− β)
∑

j∈Y
−

logP (yj = 0|X;W) (1)

where W denotes the standard set of parameters of the CNN, which are trained with

backpropagation. The multiplier β is used to handle the imbalance of the substantially

greater number of background compared to foreground pixels, which in our case are

the vessels or the optic disc. Class balancing is necessary when we have severely biased

ground truths (e.g.: approximately 10% of the pixels are vessels, while the others are

background). Y+ and Y
−

denote the foreground and background sets of the ground truth

Y , respectively. In this case, we use β = |Y
−
|/|Y |. The probability P (.) is obtained by

applying a sigmoid σ (.) to the activation of the final convolutional layer.

We use the same network architecture for both retinal vessel segmentation and optic

disc segmentation. We found that the coarse feature maps of the final stage do not

help with vessel detection since they contain coarse information which erases the thin

vessels, whereas the finest ones of the first stage do not help with detecting the coarse

structure of the optic disc. Thus, we construct two separate feature map volumes, one

for each task. For retinal vessel segmentation, the volume contains features from the 4



finer stages, while for optic disc detection we use the 4 coarser stages (see Figure 1). Our

final result for both tasks is a probability map, in which a pixel detected as vessel/disc

is assigned a higher score.

At training time, we fine-tune the entire architecture (base network and specialized

layers) for 20000 iterations. We use stochastic gradient descent with momentum, op-

erating on one image per iteration. Due to the lack of data, the learning rate is set to a

very small number (lr = 10−8), which is gradually decreased as the training process

proceeds. We augment the datasets using standard techniques, by rotating and scaling

the images, as a pre-processing step. We also substract the mean value of the training

images for each colour channel.

At testing time, there is no need for any pre-processing of the data. The entire

architecture runs on a GPU, and operates on the original RGB channels of a reti-

nal image. The average execution time for retinal vessel and optic disc segmentation

on an NVIDIA TITAN-X GPU is 85 milliseconds (ms) for DRIVE and 104 ms for

STARE, which is orders of magnitude faster than the current state-of-the-art [15,1,7].

The same applies for optic disc segmentation, where our algorithm processes an image

of DRIONS-DB in 65 ms and 110 ms for the larger images of RIM-ONE dataset.

3 Experimental Validation

We experiment on eye fundus images to segment both the blood vessels and the optic

disc . In both cases, and for each database, we split the data into separate training and

test sets, we learn all the parameters of DRIU on the training set, and then evaluate the

final model on the previously unseen test set. Since CNNs are high-capacity models,

it is a standard practice to augment the training set by rotating and scaling the images,

in order to avoid learning regularities caused by the limited size of the dataset, such as

the location of the optic disc in the training images, which would lead to overfitting and

poor generalization. Additionally, we keep the learning rate of the network very low

(fine-tuning with lr = 10−8).

Blood Vessel Segmentation: We experiment on the DRIVE [21] and STARE [11]

datasets (40 and 20 images, respectively). Both contain manual segmentations of the

blood vessels by two expert annotators. We use the segmentations of the first annotator

as the gold standard to train/test our algorithm. The ones from the second are evaluated

against the gold standard to measure human performance. For DRIVE we use the stan-

dard train/test split and for STARE we use the split defined in [9], according to which

the first 10 images consist the training set and the last 10 the test set. We compare DRIU

with the current state-of-the-art [7,1,15] as well as some traditional approaches for reti-

nal vessel segmentation [17,20]. We also retrain HED [24] (state of the art in generic

contour detection with CNNs) on DRIVE and STARE using their public code.

We compare the techniques by binarizing the soft-map result images at multiple

confidence values and computing the pixel-wise precision-recall between the obtained

mask and the gold standard, resulting in one curve per technique. Figure 2 shows both

qualitative and quantitative results. As a summary measure (in brackets in the legend)

we compute the Dice coefficient or F1-measure (equivalent [16] to the Jaccard index)

of the optimal point (marked in the lines).
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Fig. 2. Vessel Segmentation on DRIVE (top) and STARE (bottom). Left: top row, eye fundus

images; middle row, human expert annotations; bottom row, results obtained by our method.

Right: Region precision recall curves, methods in italics refer to pre-evaluated results. The red

dots indicate the performance of the second human annotator on each image of the test set.

The results show that DRIU performs better than all methods of comparison on

both datasets, in all operating regimes. Also in both datasets, DRIU provides more

consistent detections with respect to the gold standard than the second human expert

(better F measure). Interestingly, taking a closer look at some false positives of our

technique (see Figure 2 red rectangles on the bottom half), we observe that, although

very weak, there are actually two vessels where DRIU signals vessels, although the

human annotator did not notice them.



Optic Disc Segmentation: We experiment on the DRIONS-DB [2] and RIM-ONE

(r3) [6] datasets (110 and 159 images, respectively). Both contain manual segmenta-

tions of the optic disc by two expert annotators. As for the vessels, we use the segmen-

tations of the first annotator to train/test our algorithm. We split into training and testing

sets (60/50 and 99/60, respectively). Given the nature of the results, apart from the re-

gion precision-recall curves, we also measure the boundary error as the mean distance

between the boundary of the result and that of the ground truth.
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Fig. 3. Optic Disc Segmentation on DRIONS-DB (top) and RIM-ONE (bottom). Left: top

row, eye fundus images; middle row, our segmentation; bottom row, detail of our segmentation

(blue) against the two human annotations (green and cyan). Right: Region precision-recall curves

(top) and boundary error (bottom). The red dots on the curve indicate the performance of the

second human annotator on each image of the test set.



Figure 3 shows the results of the qualitative and quantitative evaluation performed

on these two datasets. Focusing first on the region precision-recall curves, DRIU shows

super-human performance, meaning that it presents results more coherent to the gold

standard than the second human annotator.

In terms of boundary accuracy, the box-plots show the distribution of errors (limits

of the 4 quartiles). In both datasets DRIU presents results that not only have a lower

median error, but also show less dispersion, so more consistency. The qualitative re-

sults corroborate that DRIU is robust and consistent, even in the more challenging and

diverse scenarios of RIM-ONE database.

4 Conclusions and Discussion

We presented DRIU, a method for retinal vessel and optic disc segmentation that is

both fast and accurate. DRIU brings the power of CNNs, which have proven ground-

breaking in other fields of computer vision, to retinal image analysis by the use of a

base shared CNN network and per-task specialized layers. The experimental validation

in four public datasets, both qualitative and quantitative, shows that DRIU has super-

human performance in these tasks1.

The impact of an automated solution to the problems of vessel and optic disc seg-

mentation goes beyond assisting specialists in the initial diagnosis of eye diseases. Ac-

curate and repeatable measurements can be an invaluable tool for monitoring their evo-

lution. Looking forward, our technology also has the potential of changing medical

practice, as it offers the possibility of carrying out robust comparative statistical analy-

ses on large populations.
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